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ABSTRACT. Luce and Narens (1985) showed that rank-dependent utility (RDU) is the most 

general interval scale utility model for binary lotteries. It can be easily established that this result 

cannot be generalized to lotteries with more than two outcomes. This paper suggests several 

additional conditions to ensure RDU as the only utility model with the desired property of interval 

scalability in the general case. The related axiomatizations of some special cases of RDU of 

independent interest (the quantile utility, expected utility, and Yaari’s dual expected utility) are also 

given. 
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1. Introduction 

The normative approach to the theory of choice under uncertainty suggests to write down a 

suitable set of axioms from which the model could be derived. Axioms can be conditionally divided 

into two parts, “contextual” (determined by the problem under investigation) and “context-free” 

(independent of the problem settings). Axioms of the last group are appealing in the sense that they 

could be applied to any problem. One possible source for “context-free” axioms is the 

representational theory of measurement (Krantz et al., 1971; Luce et al., 1990; Narens, 2002). This 

argues to focus on those algorithms of data analysis that lead to conclusions that are stable with 

respect to a change of a measurement scale of the input variables. In the literature this postulate is 

known as the requirement of meaningfulness (Luce et al., 1990, chapter 22; Narens, 2002; Roberts, 

1979). The concept of meaningfulness is often formalized in terms of invariance with respect to 

some transformations (usually, admissible transformations of a measurement scale). Informally, one 

shall say that a statement involving scales is meaningful if its truth or falsity is unchanged when 

admissible transformations are applied to all of the scales in the statement (Roberts, 1979, p. 59). 

The requirement of meaningfulness is intuitive and is topical in connection with the fact that the 

choice of a particular measurement scale is subjective. 

Various types of meaningfulness and invariance conditions are used to characterize utility 

functionals and risk attitudes (e.g., see Abbas, 2010, Bell and Fishburn, 2000, Ovchinnikov, 2002, 

Pfanzagl, 1959, Rothblum, 1975, Quiggin and Chambers, 2004, to mention just a few). This paper 



 2 

develops the approach of Luce and Narens (1985, section 7) and Luce (1988) to provide an 

axiomatization of rank-dependent utility (RDU) (Quiggin, 1982; Schmeidler, 1989) on the basis of 

the property of meaningfulness and stochastic dominance. Luce and Narens (1985, section 7) 

showed that the dual bilinear utility is the most general interval scale utility model for binary 

lotteries. In the usual probabilistic framework this reduces to RDU. In other words, RDU is the only 

cardinal utility model (in the sense that utility is defined up to an affine transformation) in the 

binary case. This result cannot be generalized to lotteries with more than two outcomes. Following 

the idea of Luce (1988) this paper suggests possible additional conditions to ensure RDU as the 

only cardinal utility model in the general case. Axiomatizations of some special cases of RDU of 

independent interest (the quantile utility, expected utility, and Yaari’s dual expected utility) are also 

given. 

The paper is organized as follows. Section 2 presents the basic definitions and notation used 

in the paper. In section 3 meaningfulness and stochastic dominance are used to axiomatize RDU. 

Motivation and economic interpretations of these assumptions are given. Subsection 3.1 collects 

some auxiliary results on preference relations that satisfy these two conditions. Subsection 3.2 

shows that these assumptions are necessary and sufficient for RDU in the case of binary lotteries. 

This case is dealt with in a related manner in Luce and Narens (1985, section 7). Section 3.3 argues 

that these conditions are not determinative for RDU in the general case. This generates the need for 

an additional assumption. Decomposability, (restricted) branch independence, and ordinal 

bisymmetry are suggested as such an assumption. Finally, section 4 presents the related 

axiomatizations of some special cases of RDU of independent interest: the quantile utility 

(subsection 4.1), Yaari’s dual expected utility (subsection 4.2), and expected utility (subsection 4.3). 

All proofs are given in the Appendix. 

 

 

2. Preliminaries 

By R  and R  denote the set of real numbers and the set of positive real numbers, 

respectively. All operations with vectors and sets are performed component-wise, e.g. 

 )(),...,()( 1 nxTxTT x , where T  is a function of one variable, ),...,( 1 nxxx . The )1( n -

dimensional unit simplex 
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in pppp  is denoted by nP . 

Let   be an open real interval. A family )(  of increasing bijections of   onto itself is 

called a scale group (or a group of admissible transformations) if it forms a group with respect to 
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the functional composition operation  . The neutral element of )( , the identity transformation, is 

denoted by id . A scale group is said to be 2-point homogeneous (Narens, 2002, p. 54) if 

for any 21 xx   and 21 xx   in   there exists )(T  such that ii xxT )( , 2,1i . (1) 

A scale group is 2-point unique (Narens, 2002, p. 54) if )(T  appearing in (1) is unique for 

particular ix , ix , 2,1i . 

Well-known examples of 2-point homogeneous scale groups are (e.g., see Narens, 2002, p. 

54) the group 

  },R,R,)()(:{)( 1  

 xbabxauuxTTu , (2) 

where u  is an increasing bijection of   onto R , describing an interval scale when u  is affine and 

scales conjugate to an interval scale for a general u  (Narens, 2002, p. 52); the automorphism group 

 itselfontoofbijectionincreasinganis:)(  TT , (3) 

describing an ordinal scale. Note: interval scales are 2-point unique; ordinal scales are not 2-point 

unique. 

For a given integer 2N  let )(D N

  be the set of all cumulative distribution functions, 

concentrated on at most N  points in an open interval  : 
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where A1  is the indicator function of a set A . The set of all probability distributions F  over the real 

line such that Fsupp  (the support of F ) is discrete and )suppsup(),suppinf( FF  will be 

denoted by )(D 

 . An element of the set )(D N

  is called a (ranked) lottery with n  outcomes and for 

convenience is denoted by  px; . For the degenerate lottery  1;x  at the point x  we use the 

special notation x . The k -th partial sum of probabilities of a lottery  px;  is denoted by 0)0( p ; 

i

ii ppp   )1()( , ni ,...,1 . 

By a preference relation ( )(D N

 ,), we mean a complete and transitive binary relation on )(D N

  

(weak order), with ( )(D N

 ,~), ( )(D N

 ,) defined as usual. By the above, ( )(D N

 ,) satisfies the 

coalescing property (e.g., see Luce, 2000, section 5.3.2). That is for any },...,2{ Nn , 

}1,...,1{  ni , x  with xxx ii  1 , and p , the lottery  px;  with n  outcomes is indifferent to 

the lottery  niiiinii ppppppxxxxx ,...,,,,...,;,...,,,,..., 2111211    with 1n  outcomes, these are 

two different ways of writing the same probability distribution. In particular, this allows us not to 

distinguish the degenerate lotteries  p;,...,xxx   for different n  and p . Similarly, a lottery 

 px;  with n  outcomes with 0ip  for some },...,1{ ni  is indifferent to the lottery 
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 niinii ppppxxxx ,...,,,...,;,...,,,..., 111111   with 1n  outcomes. Hereafter this property will be 

also referred to as coalescing. 

The following definitions are common in utility theory. ( )(D N

 ,) is nondegenerate if there 

exist     )(D;,; N

 pxpx  such that  px;    px ; . A degenerate lottery x  is a certainty 

equivalent of  px;  if  px;  ~ x . ( )(D N

 ,) satisfies stochastic dominance if  px;    px ;  

whenever     )()( ;; xFxF pxpx   for all x . ( )(D N

 ,) satisfies strict stochastic dominance if 

 px;    px ;  whenever     )()( ;; xFxF pxpx   for all x  with strict inequality for some x . 

Simple-continuity (Wakker, 1994) holds if for any lottery   )(D; N

px  with N  outcomes the sets 

    pxpxx ;;,...: 1
 N

N xx  and     pxpxx ;;,...: 1  N

N xx  are closed in 

N  (note that this continuity condition concerns only variation in outcomes). ( )(D N

 ,) is said to be 

continuous with respect to the topology of weak convergence if for any pair of weakly convergent 

sequences of probability distributions    pxpx ;; )()(  
k

kk  and    pxpx  


;; )()(

k

kk  

 )()( ; kk
px    )()( ; kk

px   for all ,...2,1k  implies  px;    px ; . ( )(D N

 ,) is representable if 

there exists a utility functional RD: )( 

NU  such that  px;    px ;  if and only if 

   pxpx  ;; UU . A utility functional U  is called idempotent if   xU x   for all x . 

( )(D N

 ,) is said to be meaningful with respect to a scale group )(  (for short, )( -

meaningful) if 

 px;    px ;     px);(T    px );(T  for all )(T . (4) 

The given definition asserts preservation of the preference structure under transformations 

)(T  and is equivalent to 1-meaningfulness (Narens, 2002, section 2.6) of the statement 

 px;    px ; . 

 

 

3. Rank-dependent utility 

Let ( )(D N

 ,) be a preference relation. Rank-dependent utility (RDU) (Quiggin, 1982; 

Schmeidler, 1989) holds if there exist a strictly increasing utility function R: u  and a 

nondecreasing transformation function ]1,0[]1,0[: w  with 0)0( w  and 1)1( w  such that the 

utility functional RD: )( 

NU  defined by 

   



n

i

i

ii xupwpwU
1

)1()( )()()(; px ,   )(D; N

px  (5) 
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represents ( )(D N

 ,). If   }1,0{]1,0[ w  then the utility function u  is unique up to an order 

preserving transformation, otherwise u  is cardinal (i.e. it is defined up to a strictly increasing affine 

transformation). The transformation function w  is uniquely determined. 

Axiomatizations of RDU are obtained by Abdellaoui (2002), Chateauneuf (1999), Luce 

(2000), Quiggin (1993), Quiggin and Wakker (1994), Segal (1989, 1993), Wakker (1994). The dual 

expected utility, the important special case of RDU, is axiomatizated by Yaari (1987). Further 

axiomatizations of rank-dependent utility have been provided in Köbberling and Wakker (2003) and 

Zank (2010). In this section we give an axiomatization of (5) in the special case when R)( u . 

The axiomatization develops the approach of Luce and Narens (1985, section 7) to describe 

preferences over lotteries with more than two outcomes. The assumption of meaningfulness of 

( )(D N

 ,) with respect to a 2-point homogeneous measurement scale and stochastic dominance play 

a crucial role in this axiomatization. Interpretations of these assumptions are as follows. 

We give three possible interpretations of the assumption of meaningfulness with respect to a 

2-point homogeneous scale group. The first one (see Luce and Narens, 1985, Luce 1988) postulates 

the existence of a cardinal utility, which is measured on an interval or weaker scale (a scale that 

preserves less structure). Indeed, if a representable preference relation is meaningful with respect to 

a 2-point homogeneous scale group, then its utility functional has the form  px);(uU , where the 

function R: u  (referred to as a cardinal utility function) is defined at least up to a positive 

affine transformation (see Proposition 3 below for the details). In other words, for any Ra , 

Rb  utility functionals  px);(uU  and  px ;)( bauU   induce the same preference relation on 

)(D N

 ; consequently the class of equivalent utility functions forms an interval scale or a weaker 

scale. Note that (5) satisfies this property whenever R)( u . 

The second interpretation of meaningfulness with respect to a 2-point homogeneous scale 

group is the so called “size” argument (e.g., see Aczél and Moszner, 1994): this is a generalization 

of the condition that constant absolute risk aversion and constant relative risk aversion are both 

satisfied. Indeed, these two types of risk aversion hold if and only if the preference relation is 

meaningful with respect to the scale group )R(id  (note that Yaari’s dual expected utility satisfies 

this condition). To demonstrate the applicability of meaningfulness with respect to some other 2-

point homogeneous scale groups consider a preference relation on the set of investment projects that 

return a fixed amount of money in a random duration. If an investor is guided by the present value 

criterion, then, equivalently, preferences over lotteries of the form  p
t ;dxe  should be analyzed, 

where x  is the project’s return, d  is the discount rate, and the project duration is it  with 

probability ip , ni ,...,1 . If the discount rate is hard to predict and project scale does not affect the 
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investor’s preferences, then the following invariance conditions make sense: preferences are 

independent of the discount rate d  and changing the project scale bxx  , Rb . Alternatively, 

independence of preferences with respect to the discount rate can be interpreted as compliance with 

the relation of stochastic dominance of infinite order (see Corollary 2 to Theorem 4 of Fishburn, 

1980) or enlarging project durations by the same factor: tt a , Ra . Clearly, these conditions 

hold if and only if the preference relation is meaningful with respect to the scale group )R(ln   

(describing a log-interval scale). 

The third interpretation of meaningfulness with respect to a scale group )(  is usual and 

sometimes referred to as the “scale” argument (e.g., see Aczél and Moszner, 1994): outcomes in the 

set   are assumed to be measured on a scale with the scale group )( . Then )( -

meaningfulness asserts preservation of the preference structure under all acceptable scales. For 

example, meaningfulness with respect to the scale group )R(id  makes sense when outcomes are 

dates, meaningfulness with respect to the scale group )R(ln   is reasonable when outcomes are of 

psychophysical nature (for example, loudness of a sound), meaningfulness with respect to the 

automorphism group )(  makes sense when outcomes are measured on an ordinal scale (e.g. 

progress in studies), etc. 

The intuitive meaning of 2-point homogeneity of a scale group is a restriction on its minimal 

“diversity” (“dimensionality”). 

Stochastic dominance is a common assumption in almost all utility models. This is a 

probabilistic counterpart to the traditional “more is better” implication. 

The implicit property of coalescing is a consequence of the fact that ( )(D N

 ,) is defined on 

the set of probability distributions, rather than on a set of random variables (generating these 

distributions on a corresponding sample space). This condition restricts attention to preferences that 

are state-independent (compare with Yaari, 1987, Axiom A1). However, it should be noted that the 

empirical evidence (e.g., see Birnbaum, 1999; Tversky and Kahneman, 1986) points to violation of 

stochastic dominance and coalescing. 

The mentioned condition R)( u  is essential to the requirement of meaningfulness be well 

defined, implies continuity of u  and can be justified by the following “transitivity” reason. For any 

    )(D;,; N

 pxpx  there exists a lottery   )(D; N

 px  such that ii xx   at most for one 

},...,1{ ni  and 

 px;  ~  px ; . (6) 
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It is easy to establish that if RDU holds and there exists )1,0(* p  such that )1,0()( * pw , then (6) 

implies R)( u  (if   }1,0{]1,0[ w  then u  can be chosen such that R)( u ). This condition is a 

version of the Archimedean axiom: any two lotteries can be equalized by changing a branch. 

Finally, instead of a continuity condition, in most of our axiomatizations representability of 

( )(D N

 ,) is explicitly assumed. This assumption is closely related to the certainty-equivalent 

condition requiring the existence for every lottery of a certainty equivalent (e.g., see Wakker, 1994). 

Indeed, under nondegeneracy and meaningfulness with respect to a 2-point homogeneous scale 

group these two assumptions are equivalent and imply the existence of a unique certainty equivalent 

for each lottery (see Proposition 1 below for the details). Obviously, this requirement is weaker than 

the continuity conditions usually used in the literature. 

Compared with one of the most general axiomatizations of RDU that was provided in 

Abdellaoui (2002) the present axiomatization seems more restrictive: this requires richness of the 

outcome space (it is a continuum) and R)( u . These assumptions cannot be weakened and are 

necessary to the requirement of meaningfulness be well defined. But we find this acceptable since 

the task of the paper is to ascertain the conditions under which RDU is the most general form of a 

cardinal utility model. 

 

3.1. Auxiliary results 

In this subsection we collect some auxiliary results on preference relations that satisfy 

stochastic dominance and are meaningful with respect to a 2-point homogeneous scale group. 

The first proposition states that representability and meaningfulness imply the existence of an 

idempotent utility functional. 

Proposition 1. 

Let ( )(D N

 ,) be a nondegenerate representable preference relation. If stochastic dominance 

and meaningfulness with respect to a 2-point homogeneous scale group hold, then there exists an 

idempotent utility functional that represents ( )(D N

 ,). 

 

The next proposition is a variant of a well-known result in the theory of invariant means 

(Orlov, 1979, p. 98; Ovchinnikov, 1996, Theorem 2.2) and deduces the functional equation for an 

idempotent utility functional of a meaningful preference relation. 

Proposition 2. 
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Let an idempotent utility functional U  represent ( )(D N

 ,). ( )(D N

 ,) is )( -meaningful if 

and only if U  satisfies the functional equation 

   pxpx ;);( UTTU   for all   )(D; N

px  and )(T . (7) 

 

The last proposition of this subsection is based on the fundamental result of Alper and Narens 

(Luce et al., 1990, Theorem 5, p. 120) and specializes equation (7) in the case of 2-point 

homogeneous scale group. 

Proposition 3. 

Let ( )(D N

 ,) be a nondegenerate representable preference relation. If stochastic dominance 

and meaningfulness with respect to a 2-point homogeneous scale group )(  hold, then there 

exists an idempotent utility functional U  that represents ( )(D N

 ,). U  is continuous with respect to 

outcomes (i.e. for each fixed Np   p;U  is a continuous function) and: 

 If )(  is 2-point unique (i.e. for any 21 xx   and 21 xx   in   there exists a unique 

)(T  such that ii xxT )(  for 2,1i ), then there exists an increasing bijection u  of   onto 

R  such that the idempotent utility functional      pxpypy ;);(; 1 UuuUuG    , )(xy u  

represents the preference relation ( )(

RD N ,') induced by the rule 

 py;  '  py ;  if and only if  py);(1u    py  );(1u  (8) 

and satisfies the functional equation 

    baGbaG  pypy ;;  for all   )(

RD; Npy , Ra , Rb ; (9) 

 If )(  is not 2-point unique, then RDU holds with idu   and the transformation function 

of the form 

)(1)( ]1,[ ppw c  or )(1)( ]1,( ppw c  (10) 

for some constants ]1,0(c , )1,0[c . 

 

Proposition 3 reduces the problem of characterization of meaningful preference relations to 

solving functional equation (9). We begin with axiomatization of binary RDU ( 2N ). This case is 

dealt with in a related manner in Luce and Narens (1985, section 7). 

 

3.2. The binary case 

The current theoretical literature on utility theory mainly agrees that preferences over binary 

lotteries can be represented by RDU. As noted by Marley and Luce (2002, p. 41), the binary case is 
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of special interest as, constructing a utility theory, some authors work with different inductive 

principles beginning with binary lotteries. 

Theorem 1. 

Let ( )2(D ,) be a nondegenerate representable preference relation. Then, RDU holds with 

R)( u  if and only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to a 2-point homogeneous scale group. 

 

It can be easily checked that (i), (ii), nondegeneracy, and representability of ( )2(D ,) are 

essential for the “if” part of Theorem 1; the requirement R)( u  is essential for the “only if” part. 

 

3.3. The case 2N  

The binary case is not revealing for RDU as many other versions of utility theory (e.g., rank 

weighted utility) reduce to RDU for binary lotteries. It may happen that in subsection 3.2 we have 

characterized something more than RDU. Actually, an attempt of a direct generalization of 

Theorem 1 to preference relations on a set of lotteries with more than two outcomes doesn’t 

characterize RDU and leads to quite a general construction. This is caused by the existence of a 

large class of solutions of functional equation (9) for 2N  besides linear ones (Aczél et al., 1994, 

section 4). This generates the need for an additional assumption for RDU to be the only cardinal 

utility model. In this subsection we consider several conditions that can achieve this purpose. 

Differentiability. Differentiability of a utility functional with respect to outcomes may serve 

as such a condition. This follows from a result of Aczél et al. (1994, Proposition 9), who showed 

that a differentiable solution of (9) is linear with respect to y . The assumption of differentiability 

can be justified by simplification of optimization technique with the preference relation. 

Differentiability with respect to outcomes (together with differentiability with respect to 

probabilities) also simplifies the measure representation of a utility functional (see Green and 

Jullien, 1988, p. 359–360). Unfortunately, differentiability is difficult to validate and empirically 

impossible to test. That is why we omit the details. 

Decomposability. The so called decomposability assumption usually says that any lottery 

with 3n  outcomes should be indifferent to a lottery having just two outcomes, the first of which 

is itself a lottery composed of the 1n  outcomes other than the most preferred (or its the certainty 

equivalent) and the second of which is the most preferred one. Various versions of this assumption 

are considered by Chew and Epstein (1989a), Liu (2004), Luce (1988, 2000), Luce and Fishburn 

(1995). 



 10 

We use the following variant of the decomposability assumption. A preference relation 

( )(D N

 ,) is called decomposable if for any   )(D; N

px  there exists x  depending only on 

11 ,..., nxx  and p  such that 

 px;  ~  )1()1( 1,;,   nn

n ppxx . (11) 

The value x  in (11) can be interpreted as a certainty equivalent of the conditional lottery 

(sublottery) of  px;  given that nx  does not realize. The only distinction of this definition from 

those usually used in the literature is that we make no assumption about the value of such a 

conditional lottery, except its independence of nx . The intuition for decomposability is that a 

sublottery can be evaluated on the assumption that it is the whole lottery. 

Under decomposability and coalescing, each lottery has a certainty equivalent. Indeed, 

 px;  ~  0,;, px nx  ~  0,1;, nxx  ~ x . (12) 

Clearly, RDU satisfies (11) with 
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Theorem 2. 

Let ( )(D N

 ,) be a nondegenerate preference relation. Then, RDU holds with R)( u  if and 

only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to a 2-point homogeneous scale group; 

(iii) decomposability. 

 

Note that under assumptions (i)–(iii) the value x  in (11) also has RDU representation (13) 

with the transformation function of the form )()( )1( npwpwp . Values 

)()()1( )1()(  ni pwpwnip , 2,...,1  ni , 0)( )1( npw  (14) 

in (13) can be interpreted as the transformed conditional probabilities of  px;  given that nx  does 

not realize. This interpretation can be justified by the following version of the choice property 

(Luce, 2000, p. 78): )()()( kipkjpjip   for all nkji 1  and np . 

Branch independence. A related axiomatization of RDU may be derived under the so called 

branch independence assumption (also referred to as ordinal independence, coordinate 

independence, or the comonotonic sure-thing principle) (e.g., see Birnbaum, 1999; Chateauneuf, 

1999; Green and Jullien, 1988; Wakker, 1994). 
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A preference relation ( )(D N

 ,) is called branch independent if 

 p;,,..., 11 nn xxx     p;,,..., 11 nn xxx 
     p;,,..., 11 nn xxx 

    p;,,..., 11 nn xxx 
  (15) 

for any },max{ 11 
 nnn xxx  in  . 

Branch independence is a weak form of Savage’s independence axiom. It states that given a 

preference between lotteries, common branches (the same outcome with the same probability) of 

the lotteries have no effect on the ordering. 

Theorem 3. 

Let ( )(D N

 ,) be a nondegenerate representable preference relation. Then, RDU holds with 

R)( u  if and only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to a 2-point homogeneous scale group; 

(iii) branch independence. 

 

Ordinal bisymmetry. An unexpected source of additional assumptions can be found in the 

field of information fusion and aggregation operators: if RDU holds then for a fixed p  the function 

 p;G  (defined in Proposition 3) is nothing more than an ordered weighted averaging operator 

(OWA) (Yager, 1988) and the corresponding idempotent utility functional  p;1  Uu   is a quasi-

OWA operator (Fodor et al., 1995). There exist a number of characterization results for these 

operators (see Chew and Epstein, 1989b; Fodor et al., 1995; Marichal, 1998, section 4.2.5; Marichal 

and Mathonet, 1999); some of them may have behavioral interpretation. The next axiomatization is 

motivated by a result of Marichal and Mathonet (1999) and is based on the bisymmetry-like 

assumption. 

Let each lottery in ( )(D N

 ,) has a certainty equivalent. Ordinal bisymmetry holds if for any 

},...,1{, Nnn  , probability vectors np , np , and lotteries     )()()1( D;,...,; Nn




pxpx  such 

that  px ;)1( j  stochastically dominates  px ;)( j , 1,...,1  nj , the following condition is satisfied: 

 p

;,..., )()1( nxx  ~  p;,..., )()1( nxx , (16) 

where )( jx  is a certainty equivalent of the lottery  px ;)( j , nj  ,...,1  and )(ix  is a certainty 

equivalent of the lottery  p

;,..., )()1( n

ii xx , ni ,...,1 . 

To motivate ordinal bisymmetry assume that outcomes of a lottery  px ;)( j  depend on the 

state j  of nature, where states nj  ,...,1  are ranked in order of less to more favorable and occur 

with probabilities p . To evaluate the situation a decision maker can either aggregate branches of 
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each of the lotteries, and then aggregate lotteries by states, or aggregate states of each of the 

branches, and then aggregate these global branches. Ordinal bisymmetry asserts that the decision 

maker can choose either the first or the second manner to proceed; the result will be the same. 

Alternative motivations and the related assumptions are considered by Luce (2000, section 3.7.3) 

(rank-dependent bisymmetry), Nakamura (1992) (multisymmetry), Pfanzagl (1959) (bisymmetry), 

Quiggin (1982) (independence axiom). 

Theorem 4. 

Let ( )(D N

 ,) be a nondegenerate representable preference relation. Then, RDU holds with 

R)( u  if and only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to a 2-point homogeneous scale group; 

(iii) ordinal bisymmetry. 

 

Theorem 4 can be obtained as a consequence of a result of Marichal and Mathonet (1999) on 

characterization of OWA. An independent proof of the theorem follows from Proposition 3. We 

also note that instead of conditions (i) and (ii), in Theorem 4 it can be explicitly stated that RDU 

holds for binary lotteries. Moreover, under strict stochastic dominance and simple-continuity the 

assumption of meaningfulness in Theorem 4 can be omitted: 

Theorem 5. 

Let ( )(D N

 ,) be a preference relation. Then, RDU holds with a continuous utility function and 

a strictly increasing transformation function if and only if the following conditions are satisfied: 

(i) strict stochastic dominance; 

(ii) simple-continuity; 

(iii) ordinal bisymmetry. 

 

 

4. Selected special cases 

In this final section we consider some special cases of RDU representation that are interesting 

in its own right: Yaari’s dual expected utility, the quantile utility, and expected utility. 

The following two particular cases of 2-point homogeneous scale groups are of important 

practical interest: )(  and )R(id . They correspond to ordinal and interval scales. In the nearest 

two subsections we observe that meaningfulness with respect to these scale groups characterizes, 



 13 

respectively, the quantile utility and Yaari’s dual expected utility. In the last subsection we 

axiomatize expected utility by meaningfulness arguments. 

 

4.1. The quantile utility 

Quantile-based decision rules (e.g., see Manski, 1988; Rostek, 2010) are an important 

subclass of utility models by two key characteristics of quantiles, robustness and ordinality. In this 

subsection we characterize them using meaningfulness arguments. 

The lower (upper) quantile functional 

)(D: N

cQ  ( 


)(D: N

cQ ) of order ]1,0(c  

( )1,0[c ) of a distribution  px;F  is defined by     cxFxQc  )(:inf; ;pxpx  

(     cxFxQc


 )(:inf; ;pxpx ). 

Let ( )(D N

 ,) be a preference relation. The quantile utility (QU) holds if either cQ  or cQ 
  

represents ( )(D N

 ,) for some constants ]1,0(c , )1,0[c . Preferences induced by the functional 

cQ  ( cQ 
 ) are the special case of RDU with the weight-function )(1)( ]1,[ ppw c  ( )(1)( ]1,( ppw c ) 

regardless of the utility function u . The following theorem applies meaningfulness arguments to 

characterize QU. 

Theorem 6. 

Let ( )(D N

 ,) be a nondegenerate representable preference relation. Then, QU holds if and 

only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to the automorphism group )( . 

 

The proof of the theorem follows directly from the second alternative of Proposition 3 (since 

the group )(  is 2-point homogeneous, but not 2-point unique) and is omitted. Theorem 6 can 

also be derived from a recent result of Chambers (2009, Theorem 1 and footnote 1). 

Theorem 6 has a number of possible intuitive meanings. First, this states that QU is the only 

reasonable utility model when outcomes are measured on an ordinal scale. Second, QU is the most 

general form of utility model when utility of outcomes are measured on an ordinal scale; thus, QU 

is the only “ordinal utility” model (compare with Manski, 1988). Third, meaningfulness with 

respect to the group )(  may be also interpreted as independence of preferences with respect to 

the choice of cardinal utility function. Hence, QU is the only possible socially acceptable utility (i.e. 

agreed with individual preferences). 
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4.2. Yaari’s dual expected utility 

The special case of RDU with the identity utility function corresponds to the dual expected 

utility (DEU) of Yaari (1987). Thus, any of the obtained axiomatizations of RDU (Theorems 1–5) 

with R  characterizes DEU when meaningfulness with respect to a 2-point homogeneous scale 

group (axiom (ii)) is replaced by meaningfulness with respect to the group )R(id . Using the 

mentioned interpretations of meaningfulness (see section 3), this result has two possible intuitive 

meanings: DEU is a reasonable utility model when either outcomes are measured on an interval 

scale, or constant absolute risk aversion and constant relative risk aversion are both satisfied. 

 

4.3. Expected utility 

In the previous sections, we deal with a preference relation ( )(D N

 ,) on the set )(D N

  of 

ranked lotteries; ( )(D N

 ,) can be also interpreted as a relation on the set of sequences of ordered 

branches ),;...;,( 11 nn pxpx  that are consistent with coalescing. Such a relation can be naturally 

extended to the set of unranked lotteries 

    n

N

nn

N ppxx 
  ,D;:,...,;,...,D )(

)()1()()1(

)(
px , where n  is the set of permutations 

of the set },...,1{ n , by the rule:  
)()1()()1( ,...,;,..., nn ppxx   ~  px; ,   )(D; N

px , n . In 

particular, if the preference relation is representable, then this extension induces symmetry of a 

corresponding utility functional    
)()1()()1( ,...,;,...,; nn ppxxUU px , n . 

The intuitive meaning of the unranked form is invariance of lotteries under permutation of 

outcomes. It is clear that such an extension itself does not apply any restriction on ( )(D N

 ,). But 

this imposes some limitations whenever it is assumed that any of the considered assumptions (such 

as decomposability (11), branch independence (15), or ordinal bisymmetry (16)) holds for unranked 

lotteries )(D N


  rather than ranked ones )(D N

 . For example, as it is well known (e.g., see Aczél, 

1966, p. 287), being applied to unranked lotteries )(D N


 , the bisymmetry assumption (16) in 

Theorem 5 provides expected utility representation 

  



n

i

ii xupU
1

)(; px . (17) 

Although the introduced unranked (symmetric) case is more restrictive, it is also of some interest 

(e.g., see Krantz et al., 1971, chapter 8). 

Let ( )(D N

 ,) be a preference relation. Expected utility (EU) holds if there exists a strictly 

increasing utility function R: u  such that the utility functional (17) represents ( )(D N

 ,). 
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In this subsection we give a simple axiomatization of EU (as the special case of RDU with 

ppw )( ) on the set of unranked lotteries )(D N


 . First, we recall that if RDU representation (5) is 

invariant under permutations n  then this reduces to EU representation (17). 

Proposition 4 (Quiggin and Wakker, 1994, p. 492). 

Let RD: )( 


NU  represent ( )(D N


 ,), 2N . If  

)()1()()1( ,...,;,..., nn ppxxU   has the 

same RDU representation for any n , then EU holds. 

 

Thus, under the condition of Proposition 4, any axiomatization of RDU in subsection 3.3 

characterizes EU representation. 

Joint receipt (concatenation). A characterization of EU representation on the set of unranked 

lotteries )(D 


  can be obtained assuming the existence of a so called concatenation (or joint receipt) 

operation. Various versions of the concept of joint receipt are considered by Luce (2000), Luce and 

Fishburn (1995), Luce and Marley (2005). We shall give the following definition. 

A concatenation operation )()()( DDD: 










  is said to be defined on )(D 


 , if there 

exists a nonconstant symmetric function 2:g  such that g  is nondecreasing with respect to 

the both arguments and 

     nnnn ppppppxxgxxgxxg 
 ,...,,);,(),...,,(),,(;; 21112111pxpx . (18) 

An intuitive meaning of (18) is receiving two independent lotteries  px;  and  px ;  at 

once. Indeed, let X  and X   be independent random variables defined on the same probability 

space with probability distributions  px;  and  px ; , respectively. Then (18) can be interpreted 

as the probability distribution of the concatenated random variable ),( XXg  . Often it is 

additionally assumed that the set   and the binary operation g  constitute a group. For example, 

when outcomes denote money, it is sometimes supposed that xxxxg ),( ; in this case   is the 

operation of convolution. 

Theorem 7. 

Let ( )(D 


 ,) be a nondegenerate preference relation. Then, EU holds with R)( u  if and 

only if the following conditions are satisfied: 

(i) stochastic dominance; 

(ii) meaningfulness with respect to a 2-point homogeneous scale group; 

(iii) continuity with respect to the topology of weak convergence; 

(iv) a concatenation operation   is defined on )(D 


  such that 
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if  11; px    11; px   and  22 ; px    22 ; px  , then    2211 ;; pxpx       2211 ;; pxpx  .  

 

An interpretation of (iv) is that the preference ordering is compatible with the concatenation 

operation  , in the sense that order between a pair of lotteries is preserved under concatenation 

another ordered pair of lotteries. 

Concluding we notice the necessity of continuity with respect to the topology of weak 

convergence in Theorem 7. Indeed, the preference relation induced by the utility functional 

  i
pi

xU
i 0:

min;


px   

satisfies the remaining conditions of the theorem with },min{),( xxxxg  . 

 

 

5. Conclusion 

This paper develops the approach of Luce and Narens (1985) and Luce (1988) to provide an 

axiomatization of rank-dependent utility on the basis of the property of meaningfulness with respect 

to a 2-point homogeneous scale (interval scalability), stochastic dominance, decomposability, 

branch independence, and ordinal bisymmetry. Motivation and economic interpretations of these 

assumptions are given. Related axiomatizations of the quantile utility, Yaari’s dual utility, and 

expected utility (as the special cases of RDU of independent interest) are also obtained. The 

established results may serve as an additional argument to use these utility theories. 

 

 

Appendix: Proofs 

Proof of Proposition 1. 

Let RD: )( 

NU  represent ( )(D N

 ,) and let )(  be the 2-point homogeneous scale group 

under consideration. By definition, put  p;,...,)( xxUxu  . By coalescing, u  is well defined (i.e. 

)(xu  is independent of n  and p ). From meaningfulness with respect to a 2-point homogeneous 

scale group, stochastic dominance, and nondegeneracy of ( )(D N

 ,) it follows that u  is strictly 

increasing. 

We shall prove that for any   )(D; N

px  there exists x  such that   )(; xuU px . 

Assume the converse. Suppose there exists a lottery  px;  such that   )(; xuU px  for all x . 

Then there exists a unique ],[ 1 nxxx   such that   )(;)(   xuUxu px  for any 0 . 
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Obviously, u  has a jump discontinuity at the point x  (if it is not, then tending   to zero, we obtain 

a contradiction:   )(; xuU px ). 

Given x , by 2-point homogeneity of )( , there exists )(T  such that xxT )( . 

By meaningfulness, we have   )();( xTuTU px  for all x  and 

  )();()(   xTuTUxTu  px  for any 0 . Hence, Tu   has a jump discontinuity at 

the point x . Since T  is continuous, u  is discontinuous at the point xxT )( . By the arbitrariness 

of the choice of x  , u  is discontinuous at each point of the interval  . But a monotone function 

has at most a countable set of discontinuity points. This contradiction proves the proposition. ▀ 

Proof of Proposition 2. 

Let a preference relation ( )(D N

 ,) be )( -meaningful and let x  be a certainty equivalent 

of  px; . Applying (4) to the relation  px;  ~ x , we get 

     pxpx ;)();( )( UTxTUTU xT   , )(T ,  

where the first equality follows from )( -meaningfulness, while the second one follows from 

idempotence of U . 

Conversely, let (7) hold. Since )(T  is order preserving, if    pxpx  ;; UU , then 

       pxpxpxpx  );(;;);( TUUTUTTU  . ▀  

Proof of Proposition 3. 

There exists an idempotent utility functional RD: )( 

NU  that represents ( )(D N

 ,) 

(Proposition 1). If the scale group )(  is 2-point unique, then the Alper–Narens theorem (Luce et 

al., 1990, Theorem 5, p. 120) implies the existence of an increasing bijection u  of   onto R  such 

that )()(  u , where )(u  is defined in (2). For this u  put 

     pxpypy ;);(; 1 UuuUuG    , )(xy u . (19) 

In the new notation equation (7) in Proposition 2 takes the form (9). G  represents the preference 

relation ( )(

RD N ,') on the set 
)(

R

)(

)( DD NN

u   induced by the rule (8) and is idempotent. Clearly, 

 p;G  is nondecreasing. A nondecreasing solution of equation (9) is continuous with respect y  

(Aczél et al., 1994, p. 447). Hence, the first alternative of Proposition 3 holds. 

If the group )(  is not 2-point unique then there exist xxx   in   and )(,  TT  

such that the equality )()( xTxT   holds exactly for two },,{ xxxx  . Since )(  is a group, 

the function TTT   1  is an element of )( . We claim that 

  },{1,;, 2121 xxppxxU   (20) 
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holds for all binary lotteries   )2(

21 D1,;,  ppxx . 

Indeed, since   is an open interval and T  defined above is continuous, then at least one of 

the following three possibilities holds: 

 there exist 21 xx   such that 1x , 2x  are fixed points of T  and xxT )(  for all ),( 21 xxx . 

The application of (7) with this T  yields: 

     

  },,{1,;,lim...

...1,;,1,);(),(1,;,

2121

)(

212121

xxppxxUT

ppxxUTppxTxTUppxxU

k

k








 (21) 

where )(kT  is the k -th iteration of T . In the last implication of (21) we use continuity and increase 

of T . 

 there exist 21 xx   such that xxT )(  for all ],[ 21 xxx  and xxT )(  for all 1xx  .
1
 

From meaningfulness and stochastic dominance, it follows that for fixed 2x  and p  the function 

 ppxU  1,;, 2  maps an interval to an interval and is nondecreasing. Therefore, it is continuous. 

Let   221 1,;, xppxxU   then, by meaningfulness, there exists 10 xx   such that 

  120 1,;, xppxxU   and 

     

   .1,;,1,;),(lim...

...1,;),(1,);(),(1,;,)(

2120

)(

20202011

ppxxUppxxTU

ppxxTUppxTxTUppxxUTxTx

k

k







 (22) 

In the last equality in (22) we use continuity and increase of T  and continuity of  ppxU  1,;, 2 . 

 there exist 21 xx   such that xxT )(  for all ],[ 21 xxx  and xxT )(  for all 2xx  .
1
 

In the same way, we have that   221 1,;, xppxxU   whenever   121 1,;, xppxxU  . 

Thus in all the three cases (20) holds for some 21 xx  . By 2-point homogeneity of the scale 

group, if   ixppxxU 1,;, 21  holds for some 21 xx   and }2,1{i  then this holds for all 21 xx   

with the same i . By stochastic dominance, for given 21 xx   the function  ppxxUp 1,;, 21  is 

nonincreasing. Therefore, either   ))((11,;, 21]1,[221 xxpxppxxU c   or 

  ))((11,;, 21]1,(221 xxpxppxxU c    for some constants ]1,0(c , )1,0[c . 

Thus, for a given   )(D; N

px  with 0p  there exists a unique },...,1{ nk  such that 

      k

kk

nk

kk

kk xppxxUUppxxUx   )()()1()1(

1 1,;,;1,;, px .  

Using coalescing, this result can be extended to lotteries with zero probabilities for some outcomes. 

Thus defined utility functionals can be represented in the form (5) with the identity utility function 

and the transformation function  ppUpw  1,;1,01)( , i.e. the second alternative of Proposition 

3 holds. Obviously, these utility functionals are continuous with respect to outcomes. ▀ 
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Proof of Theorem 1. 

Necessity: The preference relation induced by the utility functional (5) with R)( u  

satisfies (i) and (ii) with the scale group )(u . 

Sufficiency follows from Proposition 3. Its second alternative yields (5) with the 

transformation functions of the form (10) and an arbitrary strictly increasing utility function u . u  

can be chosen such that R)( u . Hence, we need to consider only the first alternative of 

Proposition 3. 

In the binary case equation (9) reduces to 

    bppyyaGppbaybayG  1,;,1,;, 2121 ,   )2(

R21 D1,;,  ppyy , Ra , Rb . (23) 

If 21 yy  , then, substituting a  for )(1 12 yy   and b  for )( 121 yyy   in (23), we get 

       2121 1,;1,01,;1,011,;, yppGyppGppyyG  . (24) 

(24) holds also in the case 21 yy  . Because of stochastic dominance,   11,;0,10  ppG  and the 

function  ppGp 1,;1,0  is nonincreasing. By coalescing,   11,0;1,0 G  and   00,1;1,0 G . 

Applying the reverse transformations, we get 

       )(1,;1,0)(1,;1,011,;, 21

1

21 xuppGxuppGuppxxU   . (25) 

A utility functional is defined up to an order-preserving transformation, hence (25) is equivalent to 

(5) with  ppGpw  1,;1,01)( . ▀ 

Proof of Theorem 2. 

Necessity: The preference relation induced by the utility functional (5) with R)( u  

satisfies (i), (ii) with the scale group )(u , and (iii) with (13), if 0)( )1( npw , and with arbitrary 

nxx   otherwise. 

Sufficiency: By (12), each lottery has a certainty equivalent. From nondegeneracy of ( )(D N

 ,), 

(i), and (ii) it follows that the certainty equivalent is unique. Therefore, Proposition 3 holds. In the 

case of its second alternative there is nothing to prove. In the case of its first alternative we must 

prove that the utility functional G  defined in (19) has the form 

   



n

i

i

ii ypwpwG
1

)1()( )()(; py ,   )(

RD; Npy . (26) 

The proof is by induction over n . (26) holds for 1n  (by definition) and 2n  (by Theorem 

1). Let, by the inductive hypothesis, (26) holds for some },...,2{ Nn . By (iii), for arbitrary  py;  

and a probability ]1,0[ )1(  npp  there exists Ry  such that 
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    ,)(1)(1,;,

1,,,...,;,;)(1)()(

)1()1()1()1(

)1(

11

)1(
1

1

)1()(

n

nnnn

n

n

nnn

n
n

i

i

ii

yppwyppwppppyyG

pppppyGGypwypwpw
















 ypy

 

(27) 

where the second equality holds due to coalescing. 

Denote ppp nn   )1()( . If 0)( )( npw  then from (27) it follows that 
















n

i

in

i

n

i

y
pw

pw

pw

pw
y

1
)(

)1(

)(

)(

)(

)(

)(

)(
,  

otherwise y  can be chosen arbitrary such that nyy  . 

Hence, for arbitrary nn yy 1  we have 

     

    ,)(1)()(

)(1)(1,;,1,,,...,;,

1

)(

1

)1()(

1

)()()()(

1

)(

111













 n

n
n

i

i

ii

n

nnnn

n

n

nn

ypwypwpw

ypwpywppyyGppppyG y

 (28) 

where the first equality holds due to independence of y  and 1ny  (axiom (iii)). 

(28) is exactly (26) for the lottery with 1n  outcomes. Therefore, (26) holds for all Nn  . ▀ 

Proof of Theorem 3. 

Necessity: Trivial. 

Sufficiency: From (i) and (ii) it follows that there exists a continuous (with respect to 

outcomes) and idempotent utility functional that represents ( )(D N

 ,) (Proposition 3). Hence, for any 

lottery   )(D; N

px  with },...,3{ Nn  outcomes there exists nxx   such that (11) holds. 

Moreover, by branch independence (iii), the value of x  is independent of nx . Thus, ( )(D N

 ,) 

satisfies the conditions of Theorem 2. ▀ 

 

To prove Theorem 4 we need the following variant of a well-known result on Jensen’s 

functional equation on a restricted domain. 

Proposition 5. 

Let )1,0(,   and let   be an open interval. If R: nf  is a nondecreasing solution of 

the equation 

  )()1()()1( yxyx fff    on the set }:),{( 22
yxyx 

nn , (29) 

then 

cxwf
n

i

ii 
1

)(x  (30) 
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for some constants c  and 0iw , ni ,...,1 . If f  is not a constant function, then   . 

Proof. 

Let Rb . Clearly, )(xf  is a solution of (29) if and only if the function )( bf x  is a 

solution of (29) on the set nb 2)(  . Hence, without loss of generality, we may assume that 0 . 

Substituting 0x  in (29), we get   )()1()()1( yy fff   0 , 0y . Substituting 

0y  in (29), we obtain )()1()()( 0fff   xx , 0x . 

Therefore, 

    )()1()()()1()()1( 0ffffff  yxyxyx  , 0x , 0y .  

Denote )()()( 0ffg  xx , xx  , yy )1(  , then 

)()()( yxyx  ggg . (31) 

(31) is the Cauchy functional equation on the restricted domain },:),{( 2
00  yxyx

n . The 

general nondecreasing solution of (31) is given by (Radó and Baker, 1987) 



n

i

ii zwg
1

)(z  for some 

nonnegative constants nww ,...,1 . Hence, (30) holds with )(0fc  . 

If f  is not a constant function then combining (29) and (30) we obtain   . ▀ 

Proof of Theorem 4. 

Necessity: Trivial. 

Sufficiency follows from Proposition 3. For its second alternative there is nothing to prove. 

Hence, we consider only the first alternative of Proposition 3. Obviously, a preference relation 

( )(

RD N ,') induced by the utility functional (19) satisfies ordinal bisymmetry if and only if ( )(D N

 ,) 

does. By Theorem 1, 

    2121 )(1)(1,;, ypwypwppyyG  .  

If   }1,0{]1,0[ w  then the second alternative of Proposition 3 holds. We have to prove our 

statement in the case when there exists )1,0(* p  such that )1,0()( * pw . 

Ordinal bisymmetry (16) with Nn  , 2n , and )1,( ** pp p  reduces to Jensen’s 

functional equation 

        pyypypy ;)(1)(;)(1;)( )2(*)1(*)2(*)1(* pwpwGGpwGpw    

on the domain N2R  . By Proposition 5 and idempotence of G , 

  



N

i

i

N

i ywG
1

)( )(; ppy  (32) 
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for some functions RP:)( NN

iw , Ni ,...,1  such that 1)(
1

)( 


N

i

N

iw p . 

To determine functions )(N

iw  consider the indifference relation 

















p;,...,,,..., 2211 
kNk

yyyy  ~'  )()(

21 1,;, kk ppyy  , (33) 

following from coalescing (here ( )(

RD N ,~') is the symmetric part of ( )(

RD N ,')). Take 11 y , 

02 y  in (33), then using (32), we get )()( )()2(

1

1

)( k
k

i

N

i pww 


p . 

Denote )2(

1ww  , then 

)()()()()( )1()(
1

1

)(

1

)()( 




  kk
k

i

N

i

k

i

N

i

N

k pwpwwww ppp .
2
 (34) 

Because of stochastic dominance, the function w  is nondecreasing and 1)(0  pw . By 

coalescing, 0)0( w , 1)1( w . Hence, for Nn   G  has the form (26). The obtained result can be 

extended to Nn  , by coalescing. ▀ 

Proof of Theorem 5. 

Necessity: Trivial. 

Sufficiency: First we recall the notion of quasisum (due to Maksa, 2005). Let 1  and 2  be 

intervals and 2

21 RS . A function RS: U  is a quasisum on 21   if there exist 

continuous and strictly increasing functions R: 11 u , R: 22 u , 

R)()(: 2211

1

12  uuu  such that  )()(),( 2211

1

1221 xuxuuxxU    for all 2121 ),( xx . 

U  is a local quasisum on 21   if, for all 2121 ),( xx , there exist open intervals 1 , 2  

such that 2121 ),( xx  and U  is a quasisum on )()( 2121  . 

Let conditions (i)–(iii) be satisfied. Then there exists an idempotent utility functional U  that 

represents ( )(D N

 ,) and for each fixed 0p   p;U  is strictly increasing and continuous (Debreu, 

1954). Ordinal bisymmetry (16) with 2 nn  and )1,( pp p , )1,( pp p , )1,0(, pp  

reduces to the bisymmetry functional equation 

    
    ppppxxUppxxUU

ppppxxUppxxUU





1,;1,;,,1,;,

1,;1,;,,1,;,

)2(

2

)1(

2

)2(

1

)1(

1

)2(

2

)2(

1

)1(

2

)1(

1
  (35) 

on the restricted domain }2,1,,,,,,:2,1,,{ )(

)(

)(

)(

)(

)( 


 jjiijjiixxjix j

i

j

i

j

i .
3
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For fixed 21 cc   in   define ],(inf 11 c , ],[ 212 cc , )sup,[ 23  c , 

 21

2

21 :),( xxxx iii  , jiij  , ji  , }3,2,1{, ji . Clearly, 

  
ji

ijxxxx


 21

2

21 :),( . 

The general continuous and strictly increasing solution of (35) with pp   on the rectangle 

domain 1

)1(

1 x , 2

)1(

2

)2(

1 , xx , 3

)2(

2 x  is known (Maksa, 1999, Theorem 1). In particular, for 

a fixed p   ppU  1,;,  is a quasisum on 12  and on 23 . 

From (35) with pp   on the domain 11

)2(

1

)1(

1 ),( xx , 22

)2(

2

)1(

2 ),( xx , we get 

    
    )2(

2

)1(

22

)2(

1

)1(

11

1

12

)2(

22

)2(

11

1

12

)1(

22

)1(

11

1

12

,,

)()(,)()(

xxUuxxUuu

xuxuuxuxuuU

 







 (36) 

for some continuous and strictly increasing functions R: 11 u , R: 22 u , 

R)()(: 2211

1

12  uuu  (here we use the fact that U  is a quasisum on 12 ). In (36) and 

hereafter, for convenience, we drop the subscripts p  and p1  from U . 

By definition, put   iiiiiii xxxuxuu  ),(:)(),()( 2121 , )( )()( j

ii

j

i xuy  , 2,1, ji , 

   )(),(, 2

1

121

1

121221 yuyuUuyyF   ,    )(),(, 2

1

11

1

1121 yuyuUuyyG   , and 

   )(),(, 2

1

21

1

2221 yuyuUuyyH   , then (36) reduces to 

     )2(

2

)1(

2

)2(

1

)1(

1

)2(

2

)2(

1

)1(

2

)1(

1 ,,, yyHyyGyyyyF  . (37) 

(37) is Pexider’s functional equation on the restricted domain )(),( )2()1(

iiiii uyy  , 2,1i . Its 

general idempotent strictly increasing solution is given by (Radó and Baker, 1987) 

  2121 )1(, ywwyyyG  , )(),( 11121 uyy , 

  2121 )1(, ywwyyyH  , )(),( 22221 uyy  
 

for some )1,0(w . 

Hence, 

   )()1()(, 2111

1

121 xuwxwuuxxU   , 1121 ),( xx , 

   )()1()(, 2212

1

221 xuwxwuuxxU   , 2221 ),( xx . 
 

Define the continuous and strictly increasing function R: 21 u  by 
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)(
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21

1

1221 , 1221 ),( xx  (38) 

and 

   )()1()(, 21

1

21 xuwxuwuxxU    (39) 

whenever either 1121 ),( xx  or 2221 ),( xx . From (38) with 11 cx   and (39), we get 

)(
)()1(
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Using (38) with 12 cx   and (39), we obtain 
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 , )](),()1()((inf 11 cucuwwuy  . (41) 

Combining (38)–(41), we get that (39) holds for 22121121 ),( xx . 

From (35) with pp   on the domain 22

)2(

1

)1(

1 ),( xx , 33

)2(

2

)1(

2 ),( xx , in the same way, 

we obtain 

   )()1()(, 21

1

21 xuwxuwuxxU   , 33232221 ),( xx  (42) 

for a continuous and strictly increasing function R: 32 u . 

Comparing (39) and (42) on the set 2221 ),( xx , we get 

   )()1()()()1()( 21

1

21

1 xuwxuwuxuwxuwu   , 2221 ),( xx .  

This is Jensen’s functional equation with respect to the function 1 uu  . Hence, by Proposition 5, 

buau  , 0a  on 2  and ww  . Since the functions u   and u   are defined up to an affine 

transformation, without loss of generality, we may assume that uu   on 2  and define a 

continuous and strictly increasing function 










3

21

if)(

if)(
)(

xxu

xxu
xu .  

Hence, 

   )()1()(, 21

1

21 xuwxwuuxxU    (43) 

whenever 332322121121 ),( xx . 

To determine U  on 13  we use the fact that U  is a quasisum on 13 . Indeed, since 

 31  and   is open, given 1321 ),( xx  there exist 1c , 2c  in   such that 

2211 cxcx  . From (35) with pp   on the domain ),(inf 1

)1(

1 cx  , 2

21

)1(

2

)2(

1 ),(),( ccxx  , 

)sup,( 2

)2(

2  cx , we get (Maksa, 1999, Theorem 1) that U  is a quasisum on ),(),(inf 211 ccc  . 

Hence, U  is a local quasisum on 13 . But a local quasisum on a rectangle is a quasisum on it 
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(Maksa, 2005, Theorem 1). Therefore, there exist continuous and strictly increasing functions 13u , 

1u , 3u  such that    )()(, 2311

1

1321 xuxuuxxU    on 13 . 

From (35) with pp   on the domain 11

)2(

1

)1(

1 ),( xx , 33

)2(

2

)1(

2 ),( xx , in the same way, 

we obtain that (43) holds also for 13 . Hence, 

   )())(1()()(1,;, 21

1

21 xupwxupwuppxxU ppp     

for some function R: pu , depending on p . 

To determine whether pu  actually depends on p  consider (35) for pp  : 
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 (44) 

(44) is Jensen’s functional equation with respect to the function 

 ppyuyuUuyy ppp
 1,);(),(),( 2

1

1

1

21  . By Proposition 5 and idempotence of U , there exists a 

function ]1,0[]1,0[: 2 w  such that 

   

 .)()),(1()(),(

1,;,)())(1()()(

21

1

2121

1

xuppwxuppwu

ppxxUxupwxupwu

ppp
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This is again Jensen’s equation with respect to the function 1

pp uu  . Hence, by Proposition 5, 

pp uu   (up to an affine transformation) and )(),( pwppw  . 

Therefore, 

   )())(1()()(1,;, 21

1

21 xupwxupwuppxxU   , 21 xx  , 2

21 ),( xx , ]1,0[p . (45) 

w  is strictly increasing, by (i). 

From the proof of Theorem 4 we know that (45) and ordinal bisymmetry (16) imply RDU. ▀ 

Proof of Theorem 7. 

Necessity: a preference relation induced by (17) with R)( u  satisfies (i), (ii), (iii), and (iv) 

with  )()(),( 1 xuxuuxxg   . 

Sufficiency: Let U  be an idempotent utility functional that represents ( )(D 


 ,) ((iii) and 

Proposition 1). Taking into account Theorem 1, we obtain that there exist an increasing bijection 

R: u  and a transformation function w  such that 

   ))(1)(()()(1,;, 21

1

21 pwxupwxuuppxxU   ,   )2(

21 D1,;,  ppxx .  

w  is continuous, by (iii). Therefore, there exists )1,0(* p  such that )1,0()( * pw . 
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Let ( )(

RD  ,') be the preference relation on the set )(

RD   defined by (8) and let G  be the 

idempotent utility functional (19).   induces the following concatenation operation   on )(

RD  : 

     nnnn ppppppyyfyyfyyf 
 ,...,,);,(),...,,(),,(;; 21112111pypy ,  

where  )(),(),( 11 yuyuguyyf   . Obviously, ( )(

RD  ,') satisfies (i), (ii), (iii), and (iv) (with 

  instead of  ) if and only if ( )(D 


 ,) does. 

Given 21 yy   let y  be a certainty equivalent of the lottery   )2(

R

**

21 D1,;,  ppyy . By (iv), 

for any Ry  

      

    .,)(1)(),(

;,)(1),()(),(

*

2

*

1),(

21

*

2
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1

ypwypwyfyyfG

GpyyGpwyyfpwyyf

yyf

yyy












 (46) 

For a fixed y   (46) is Jensen’s functional equation with respect to the function ),( yf  . Its general 

nondecreasing solution is given by (Proposition 5) 

)()(),( ybyyayyf   (47) 

for some functions a  and b . 

By symmetry of f , it admits the dual representation 

)()(),( ybyyayyf  . (48) 

Combining (47) and (48), we obtain the bilinear functional equation. Its general solution is 

given by (Aczél, 1966, p. 161) 

ycybyyayyf  )(),(   

for some constants a , b , and c  (compare with Luce and Fishburn, 1995, p. 8, equation (11)). Since 

f  is nonconstant and nondecreasing, 

byyayyf  )(),(  (49) 

for some constants 0a  and b . 

From (49) and (iv) it follows that 

 

          .;;;;

,...,,;)(,...,)(,)( 21112111

bGGaG

ppppppbyyabyyabyyaG nnnn



 

pypypypy
 (50) 

Combining (9) and (50), we obtain an additive representation: 

     pypy   ;;,...,,;,...,, 21112111 GGppppppyyyyyyG nnnn . (51) 

Given   )(

RD; py  let y  be the mathematical expectation 
i

ii ypy . By the definition of 

)(

RD   (see section 2), y  is well defined. 

Define inductively 
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kkkk ppppppyyyyyy kk
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1

)(

2
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11
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)1()1( ,...,,;,...,,; 
py ,  
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   pypy ;; )1()1(  , ,...2,1k  

From (9) and (51), we get 

       )()(

11

;;;; kk
k

j

k

j

kGkGkGG pypypypy  


 for any natural k .  

By the law of large numbers  )()( ; kk k py  converges weakly to y  as k . Hence, by (iii), 

    
i

iiy ypGG py; .  

Applying the reverse transformation, we obtain EU representation for ( )(D 


 ,). ▀ 

 

 

Notes 

1. If the inverse inequality holds, then consider 1T  instead of T . 

2. The proof that (32) implies (34) also follows from a general result of Luce and Marley (2005, 

Theorem 11). 

3. Recently professor Imre Kocsis (2009) (personal communications) has considered a 

generalized version of equation (35). 

 

 

Acknowledgements 

The author is grateful to R. Duncan Luce for valuable suggestions on earlier drafts of the 

manuscript. Two anonymous referees have provided useful feedback on this paper. 

 

 

References 

Abbas, A.E. (2010). Invariant multiattribute utility functions. Theory and Decision, 68, 69–99. 

Abdellaoui, M. (2002). A genuine rank-dependent generalization of the von Neumann-Morgenstern 

expected utility theorem. Econometrica, 70(2), 717–736. 

Aczél, J. (1966). Lectures on functional equations and their applications. New York: Academic 

Press. 

Aczél, J., Gronau, D., & Schwaiger, J. (1994). Increasing solutions of the homogeneity equation 

and of similar equations. Journal of Mathematical Analysis and Applications, 182(2), 436–

464. 

Aczél, J., & Moszner, Z. (1994). New results on “scale” and “size” arguments justifying invariance 

properties of empirical indices and laws. Mathematical Social Science, 28, 3–33. 



 28 

Bell, E.D., & Fishburn, P.C. (2000). Utility functions for wealth. Journal of Risk and Uncertainty, 

20, 5–44. 

Birnbaum, M.H. (1999). Paradoxes of Allais, stochastic dominance, and decision weights. In J. 

Shanteau, B. A. Mellers, D.A. Schum (eds.). Decision Science and Technology: Reflections 

on the Contributions of Ward Edwards. Norwell, MA: Kluwer Academic Publishers, 27–52. 

Chambers, C.P. (2009). An axiomatization of quantiles on the domain of distribution functions. 

Mathematical Finance, 19, 335–342. 

Chateauneuf, A. (1999). Comonotonicity axioms and rank-dependent expected utility theory for 

arbitrary consequences. Journal of Mathematical Economics, 32, 21–45. 

Chew, S.H., & Epstein, L.G. (1989a). A unifying approach to axiomatic non-expected utility 

theories. Journal of Economic Theory, 49, 207–240. 

Chew, S.H. and Epstein, L.G. (1989b). Axiomatic rank-dependent means. Annals of Operations 

Research, 19, 199–309. 

Debreu, G. (1954). Representation of a preference ordering by a numerical function. In R.M. Thrall, 

C.H. Coombs, R.L. Davis (eds.). Decision processes. New York: Wiley, 159–165. 

Fishburn, P.C. (1980). Continua of stochastic dominance relations for unbounded probability 

distributions. Journal of Mathematical Economics, 7, 271–285. 

Fodor, J.C., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted 

averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236–240. 

Green, J., & Jullien, B. (1988). Ordinal independence in non-linear utility theory. Journal of Risk 

and Uncertainty, 1, 355–387. 

Köbberling, V., & Wakker, P.P. (2003). Preference foundations for nonexpected utility: a 

generalized and simplified technique. Mathematics of Operations Research, 28(3), 395–423. 

Kocsis, I. (2009). Solution of a bisymmetry equation on a restricted domain. Publicationes 

Mathematicae Debrecen, 75, 167–172. 

Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. 1). 

New York: Academic Press. 

Liu, L. (2004). A note on Luce-Fishburn axiomatization of rank-dependent utility. Journal of Risk 

and Uncertainty, 28(1), 55–71. 

Luce, R.D. (1988). Rank-dependent subjective expected-utility representations. Journal of Risk and 

Uncertainty, 1(3), 305–332. 

Luce, R.D. (2000). Utility of gains and losses: measurement-theoretical and experimental 

approaches. Mahwah, NJ: Erlbaum. 

Luce, R.D., & Fishburn, P.C. (1995). A note on deriving rank-dependent utility using additive joint 

receipts. Journal of Risk and Uncertainty, 11(1), 5–16. 



 29 

Luce, R.D., Krantz, D.H., Suppes, P., & Tversky, A. (1990). Foundations of measurement (Vol. 3). 

San Diego: Academic Press. 

Luce, R.D., & Marley, A.A.J. (2005). Ranked additive utility representations of gambles: old and 

new axiomatizations. Journal of Risk and Uncertainty, 30(1), 21–62. 

Luce, R.D., & Narens, L. (1985). Classification of concatenation measurement structures according 

to scale type. Journal of Mathematical Psychology, 29, 1–72. 

Maksa, G. (1999). Solution of generalized bisymmetry type equations without surjectivity 

assumptions. Aequationes Mathematicae, 57, 50–74. 

Maksa, G. (2005). Quasisums and generalized associativity. Aequationes Mathematicae, 69, 6–27. 

Manski, C.F. (1988). Ordinal utility models of decision making under uncertainty. Theory and 

Decision, 25, 79–104. 

Marichal, J.-L. (1998). Aggregation operations for multicriteria decision aid. University of Liège: 

Ph.D. Thesis. 

Marichal, J.-L., & Mathonet, P. (1999). A characterization of the ordered weighted averaging 

functions based on the ordered bisymmetry property. IEEE Transactions on Fuzzy Systems, 

7(1), 93–96. 

Marley, A.A.J., & Luce, R.D. (2002). A simple axiomatization of binary rank-dependent utility of 

gains (losses). Journal of Mathematical Psychology, 46, 40–55. 

Nakamura, Y. (1992). Multisymmetric structures and non-expected utility. Journal of Mathematical 

Psychology, 36, 375–395. 

Narens, L. (2002). Theories of meaningfulness. London: Lawrence Erlbaum Associates. 

Orlov, A.I. (1979). Stability of socio-economical models. Moscow: Nauka (in Russian). 

Ovchinnikov, S. (1996). Means on ordered sets. Mathematical Social Science, 32, 39–56. 

Ovchinnikov, S. (2002). On order invariant aggregation functional. Journal of Mathematical 

Psychology, 46(1), 12–18. 

Pfanzagl, J. (1959). A general theory of measurement-applications to utility. Naval Research 

Logistics Quarterly, 6, 283–294. 

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 

3(4), 324–343. 

Quiggin, J. (1993). Generalized expected utility theory: the rank-dependent model. Boston: Kluwer 

Academic Publishers. 

Quiggin, J., & Chambers, R.G. (2004). Invariant risk attitudes. Journal of Economic Theory, 117, 

96–118. 

Quiggin, J., & Wakker, P. (1994). The axiomatic basis of anticipated utility theory: a clarification. 

Journal of Economic Theory, 64, 486–499. 

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WK3-4DT5PDS-76-1&_cdi=6895&_user=10&_pii=0022249692900286&_orig=browse&_coverDate=09%2F30%2F1992&_sk=999639996&view=c&wchp=dGLbVtz-zSkzS&md5=8c601e19a4a822d4c7f0f47145476f85&ie=/sdarticle.pdf


 30 

Radó, F., & Baker, J.A. (1987). Pexider’s equation and aggregation of allocations. Aequationes 

Mathematicae, 32, 227–239. 

Roberts, F.S. (1979). Measurement theory, with applications to decisionmaking, utility, and the 

social sciences. London: Addison-Wesley. 

Rostek, M. (2010). Quantile maximization in decision theory. The Review of Economic Studies, 

77(1), 339–371. 

Rothblum, U.G. (1975). Multivariate constant risk posture. Journal of Economic Theory, 10, 309–

332. 

Schmeidler, D. (1989). Subjective probability and expected utility without additivity. 

Econometrica, 57, 571–587. 

Segal, U. (1989). Anticipated utility: a measure representation approach. Annals of Operation 

Research, 19, 359–373. 

Segal, U. (1993). The measure representation: a correction. Journal of Risk and Uncertainty, 6, 99–

107. 

Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. Journal of 

Business, 59(4), S251–S278. 

Wakker, P. (1994). Separating marginal utility and probabilistic risk aversion. Theory and Decision, 

36, 1–44. 

Yaari, M.E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95–115. 

Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision 

making. IEEE Transactions on Systems, Man and Cybernetics, 18, 183–190. 

Zank, H. (2010). Consistent probability attitudes. Economic Theory, 44, 167–185. 

 

 

Address for correspondence: Mikhail V. Sokolov. St. Petersburg Institute for Economics and 

Mathematics RAS, 1 Chaikovskogo st., St. Petersburg, 191187, Russia; European University at St. 

Petersburg. 3 Gagarinskaya st., St. Petersburg, 191187, Russia. E-mail: sos-homepage@yandex.ru. 

mailto:sos-homepage@yandex.ru

